Charge in a Magnetic Field

Review the textbook on the Motion of a Charged Particle in a Magnetic Field

- Phys 1402: Serway/Vuille: Section. 19.6, Active Figures 19.19 and 19.20, Example 19.6.
- Phys 2426: Serway/Jewett: Section 29.2, Active Figures 29.8 and 29.9, Example 29.3.

$$
m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, \quad m_{p}=1.7 \times 10^{-27} \mathrm{~kg}, \quad e=\left|q_{e}\right|=\left|q_{p}\right|=1.6 \times 10^{-19} \mathrm{C}
$$

1. A proton enters a region of a uniform magnetic field with velocity $v=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in $+\mathbf{X}$ direction. The magnitude of the field is 2.0 T and is in $-\mathbf{Y}$ direction. What is the magnetic force (magnitude and direction) exerted on the proton from the field?
(9.6e-13 N in $-\mathbf{Z}$ direction or into the page)
2. An electron enters a region of a uniform magnetic field with velocity $v=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in $+\mathbf{X}$ direction. The magnitude of the field is 2.0 T and is in $-\mathbf{Y}$ direction. What is the magnetic force (magnitude and direction) exerted on the proton from the field?
($9.6 \mathrm{e}-13 \mathrm{~N}$ in $+\mathbf{Z}$ direction or out of the page)
3. An electron enters a region of a uniform magnetic field with velocity $v=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in $+\mathbf{X}$ direction. The magnitude of the field is 2.0 T and is in $-\mathbf{X}$ direction. What is the nature of electron's trajectory in this field (a line, a circle, or a helix)?
(A line, because the velocity is parallel to the magnetic field.)
4. A proton enters a region of a uniform magnetic field with velocity that has x - and y-components, $v=\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \mathbf{x}+\left(-2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \mathbf{y}$. The magnitude of the field is 2.0 T and is in $-\mathbf{X}$ direction. What is the nature of proton's trajectory in this field (a line, a circle, of a helix)?
(A helix, because the velocity has both parallel and perpendicular components relative to the magnetic field)
5. A proton enters a region of a uniform magnetic field with velocity that has x - and y-components, $v=\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \mathbf{x}+\left(-2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \mathbf{y}$. The magnitude of the field is 2.0 T and is in $-\mathbf{Z}$ direction. What is the nature of proton's trajectory in this field (a line, a circle, of a helix)?
(A circle, because both components of the velocity are perpendicular relative to the magnetic field)
6. An electron enters a region of a uniform magnetic field with velocity $\mathrm{v}=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in $+\mathbf{X}$ direction. The magnitude of the field is 2.0 T and is in $\mathbf{- Y}$ direction. What are the radius and direction of electron's circular orbit?
($8.5 \mu \mathrm{~m}$ clockwise as viewed toward $-\mathbf{Y}$ direction)
7. A proton enters a region of a uniform magnetic field with velocity $\mathrm{v}=3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in $+\mathbf{X}$ direction. The magnitude of the field is 2.0 T and is in $-\mathbf{Y}$ direction. What are the radius and direction of proton's circular orbit? (1.6 cm counter clockwise as viewed toward -Y direction)
8. What would be the change in the trajectory of the electron from the question \#6 with the gradual increase of the magnitude of magnetic field?
(The electron will continue to rotate clockwise as viewed toward - Y direction but the radius of the trajectory will get gradually smaller)
